Spectral methods to approximate the likelihood for irregularly spaced spatial data

نویسنده

  • Montserrat Fuentes
چکیده

Likelihood approaches for large irregularly spaced spatial datasets are often very difficult, if not infeasible, to use due to computational limitations. Even when we can assume normality, exact calculations of the likelihood for a Gaussian spatial process observed at n locations requires O(n) operations. We present a version of Whittle’s approximation to the Gaussian log likelihood for spatial regular lattices with missing values and for irregularly spaced datasets. This method requires O(nlog2n) operations and does not involve calculating determinants. Due to the edge effect the estimated covariance parameters using this approximated likelihood method are efficient only in one dimension. To remove this edge effect, we introduce data tapers. In spatial statistics, data tapers are often the tensor product of two one-dimensional tapers. However, we generally need more tapering for the corner observations. Thus, we introduce here a new spatial data taper, a circular taper, that gives more tapering to the corner observations. Therefore, with less overall tapering, we get the amount of smoothing that we need without losing so much information. We present simulations and theoretical results to show the benefits and the performance of the data taper and the spatial likelihood approximation method presented here for spatial irregularly spaced datasets and lattices with missing values.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Approximate likelihood for large irregularly spaced spatial data1

Likelihood approaches for large irregularly spaced spatial datasets are often very difficult, if not infeasible, to use due to computational limitations. Even when we can assume normality, exact calculations of the likelihood for a Gaussian spatial process observed at n locations requires O(n) operations. We present a version of Whittle’s approximation to the Gaussian log likelihood for spatial...

متن کامل

Approximate likelihood for large irregularly spaced spatial data.

Likelihood approaches for large irregularly spaced spatial datasets are often very difficult, if not infeasible, to implement due to computational limitations. Even when we can assume normality, exact calculations of the likelihood for a Gaussian spatial process observed at n locations requires O(n(3)) operations. We present a version of Whittle's approximation to the Gaussian log likelihood fo...

متن کامل

Interpolation of Nonstationary High Frequency Spatial - Temporal Temperature Data

The Atmospheric Radiation Measurement program is a U.S. Department of Energy project that collects meteorological observations at several locations around the world in order to study how weather processes affect global climate change. As one of its initiatives, it operates a set of fixed but irregularly-spaced monitoring facilities in the Southern Great Plains region of the U.S. We describe met...

متن کامل

Resampling Methods for Spatial Regression Models under a Class of Stochastic Designs

In this paper we consider the problem of bootstrapping a class of spatial regression models when the sampling sites are generated by a (possibly nonuniform) stochastic design and are irregularly spaced. It is shown that the natural extension of the existing block bootstrap methods for grid spatial data does not work for irregularly spaced spatial data under nonuniform stochastic designs. A vari...

متن کامل

AR Spectral Estimation by Application of the Burg Algorithm To Irregularly Sampled Data

Many methods have been developed for spectral analysis of irregularly sampled data. Current popular methods such as Lomb-Scargle and resampling tend to be biased at higher frequencies. Slotting methods fail to consistently produce a spectrum that is positive for all frequencies. In this paper, a new estimator is introduced that applies the Burg algorithm for AR spectral estimation to unevenly s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004